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Abstract. In this paper we present the exact solution for the average minimum energy of the
random bipartite matching model with an arbitrary finite number of elements where randomly
paired interactions are described by an independent exponential distribution. This solution confirms
the Parisi conjecture proposed for this model previously, as well as the result of the replica solution
of this model in the thermodynamic limit.

1. The model

The model under consideration can be formulated as follows. We have a society consisting
of N ‘men’ (labelled byi = 1,2,..., N) and N ‘women’ (labelled by; = 1,2,..., N)
described by a given set 8f2 random non-negative interactions; } between every man and
every woman. The statistics df;s is defined by a probability distribution functidt J;;].

Then we consider all possible ‘marriages’ with strict monogamy: every man can be
connected with one and only one woman, and vice versa. Thus, a particular marriage
configuration in this society can be described by Me< N permutation matrixS;; with
the elements taking values 0 or 1 (‘0" for all non-coupled pairs of men and women, and ‘1’ for
married couples) constrained by two conditions:

N
Sy=Y 8;=1 (1.1)

N
—1 j=1

1

which allow one and only one ‘1’ in each row and in each column of the maétrikhe total
number of all possible marriage configurations in this society is thus equél to

Now for every marriage configuratidhwe introduce the total energy, or total weight (the
Hamiltonian):

N
H[S, j] = Z S,'j.],'j. (12)
i,j=1

For a given matrixS this energy is equal to the sum of particularJ;;s (one from each line
and each column) corresponding to the particular married couples. In this paper we consider
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2016 V S Dotsenko

the simplest possible model in which the interacti@hs} are assumed to be independent and
described by the bounded exponential distribution
N
P[Jl‘j] = l_[ eXp(—Jij) 0L Jij < +00). (13)
i,j=1

The problem studied below is formulated as follows: one has to find the v&{uef the
average (over the distributioR[J;;]) minimum(over all configurations of the permutation
maitrix S;;) energy (1.2):

N oo N
Ey = [1_:[1/0 sz'_/} P[J;j] min (i;l Sij Ji./)- (1.4)

LJ

Equivalently, in the language of statistical mechanitg can be obtained as the zero-
temperature limit of the average free energy:

1 N oo N
Ey =— lim = [H / dJ;; exp(—J,j)} log (Z exp[—ﬁ > S,-_,-J,-_,»D
p—o0 ﬁ 0 Si;

i,j=1 i,j=1

= —ﬁlimoo%<log [Zexp{—ﬂH[S; f]}D. (1.5)
Sij
Thus, we face the typical problem of statistical mechanics with quenched disorder: first, for
given values of random parametgss; } one has to compute the partition function and the free
energy, and only after that does one carry out the averaging/gger

In the thermodynamic limitfy — oo) this problem has been solved some years ago in
the framework of the replica symmetric ansatz [1], yielding the result

Enoco = C(Z) = %772~ (16)

In this paper we present the exact solution of this problem for an arbitrary (finite) vaNie of
The caseV = 1 is trivial,

Eyoi=1. (1.7)

The casev = 2is only slightly more complicated, and it can also be easily calculated explicitly.
Here the 2x 2 permutation matrix§ can have only two configurations:

10

St (1.8)
and

0|1

1[0 (1.9)
Thus, according to the definitions (1.4) or (1.5) we have

o0
En—p = 2/ dJ11dJ12 021 dJop (J11 + J22) €Xp{—J11 — J12 — Jo1 — J22)
0
X0 (J12+ J21 — J11 — J22). (1.10)

Here thed-function ensures that the state (1.8) has a lower energy than (1.9) (due to the obvious
symmetry of the system the contribution from the opposite situation turns out to be the same,
and this provides the factor of two in the above equation). Simple integration yields

Ey_p=1+1. (1.112)
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Noting that the result (1.6) fa¥ = oo can also be represented in the form

=1
Enoeo=0@ =) &

k=1

(1.12)

and taking into account the results (1.7) and (1.11), Parisi has recently proposed a very elegant
conjecture that the solution of the problem for an arbitrary valu¥ ofiust be the following

[2]:
M1
Ex=) = (1.13)
k=1
For thedirect calculation ofEy (in the style of equation (1.10)) with an arbitra¥y/one
should perform the integration over the parameféyg in the constrained positive subspace
Jij > 0 oftheN2-dimensional space. Since the total number of states of thé/ permutation
matrix is equal toN! this integration is also constrained ! — 1) hyperplanes which
guarantee that one chosen particular state has the minimum energy. One can easily verify
that even in the cas¥ = 3 such a calculation turns out to be an extremely difficult problem.
Nevertheless, simple numerical tests M= 3, 4, 5 proved to be compatible with the above
conjecture with the precision107° [2]. Moreover, recent analytical studies have provided
the exact solution of this problem fo¥ < 4 [3] and forN < 6 [4], and the result of these
solutions confirms the conjecture (1.13). Here we use the original idea (proposed by Bravyi)
of the unpublished work [3] to prove that the conjecture (1.13) is indeed correct for arbitrary
N.

2. The proof

To ease further presentation of the proof let us introduce the following notation. The operation
of finding the average of the minimum energy of fiex N problem (defined in equations (1.4)
or (1.5)) will be denoted by the symbol

E = En. (2.1)

Itis assumed that ‘empty’ boxes in the above matrix actually contain random elefdghts
Let us consider the first line of the random matfix and amongV of its elements/; let
us find the minimum one7 ™™ = min; (J;,). Due to its obvious symmetry of the problem with

respect to permutations of the columns of the maffjxwe can always place this minimum
element in the positiol, 1). Now let us redefine the elements of first line as follows:

Jij =TIV + G#D (2.2)

and leave all the other elements unchanged. According to (1.3), the eleinpane described
by the sameexponential distributionP[J3;] = exp(—Jy;), (Ji; > 0), while for J@® the
distribution is

P[JY] = Nexp(-NJD). (2.3)
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Due to the constrains (1.1), the above redefinition produces only a simple shift of the
Hamiltonian (1.2):

N
H=J9+Y 5], (2.4)
ij=1

where the random matrix; ; contains ‘0’ in the positior{1, 1), while the rest of its elements
are described by the same distribution (1.3). Now using the definitidtyolequation (1.5),
we can easily integrate out® to obtain

)
En =+ +Ey (2.5)
where
0
EY=E s . (2.6)

[T -1

To calculateE ) let us consider theecondine of the above random matrix, and among

N of its elements/,; let us find the minimum one7® = min;(J,;). Now, due to the ‘0’ in
position(1, 1), the first column of this matrix is no longer equivalent to the rest of e 1)
columns (which remain equivalent among themselves). Therefore, with probabiktyte
minimum element can be in the positi@ 1), and with the probabilityN —1)/N it can be in
the rest of the positions of the second line, and in this last case we can place it in p@si#ipn
Then we shift the values of the elements of the second lipe:= J@ + fzj (which leave the
distribution of{fgj} unchanged). The integration ovéf? gives one more factor/IV, and
for Ey we obtain

1

=2+ WD L a2 @7
where
0
0
EP=E (2.8)
1]
and
0
0
EP=E . (2.9)
L[]
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Equation (2.7) can be represented in the form
2 1

Ey=+ EQ + NaE;? (2.10)
where

0 0

0 . 0
SE? = E —E . (2.11)

[T -] [T ]

To calculate the valuEl(vz) defined by the matrix

0

(2.12)

L]
let us consider itghird line, and amongV elementsJz; let us find the minimum one:

JO® = min;(Jz;). Due to the two ‘O’s in positiongl, 1) and(2, 2), the first and the second
columns of this matrix are equivalent between themselves, but they are not equivalent to the
rest of the(V — 2) columns (which remain equivalent among themselves). Therefore, with the
probability 2/ N the minimum element can be placed in the positi&r2), and with probability

(N — 2)/N it can be in the rest of the positions of the third line, and here we can place it in
position (3, 3). Then we shift the values of the elements of the third lidg: = JO + fgj

(which again leave the distribution ({)fg‘,-} unchanged), and integrate owg® which gives

one more factor AN . In this way we obtain

Ey = % + %E}VS) + %E‘,ﬂf) +8E? (2.13)
where
0
0
EY=E 0 = (2.14)
Ll
and
0
0
EY=E 0 e . (2.15)
LT
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Equation (2.13) can be represented in the form

Ey = % +EQ + %55}? + %aE;% (2.16)
where
0 0
0 0
SEY = E 0 ~-E 0 . (2.17)

[T [ -] [T [ -]

Proceeding in this way up to the last line we eventually obtain

Nk—1_
Ey=1+) =——ZSEy (2.18)
k=2 N

(note thate ("’ = 0 since it is given by the matrix with all zeros on the diagonal) where

0

SEVY = E 0

B |0 1| (2.19)

I I

Here the double lines mark the positions of kitle column and théth line.
It can be proved (see appendix A) that the above v&m,‘é> is given by therectangular
N x k random matrix problem:

0

SEW = E (2.20)
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defined by the Hamiltonian

k
H[S: J] = E:EZS,L] (2.21)
Jj=

where the random matri};; is shown in equation (2.20) (with the same independent
exponential distributions of non-zero elements). Here the ‘truncatedk part of the original
permutation matrix$ again can have only one ‘1’ in each line, and besides ittheslumns
each containing only one ‘1’ an@V — k) columns each containing only ‘0’.

It turns out that the above ‘rectangular’ problem, equation (2.20), can be solved explicitly
(the proof is given in appendix B):

k-1
SEW = 2.22
k(k — J);:N (2.22)

Substituting this result into equation (2.18) we find

k-1 I

N1
z:- (2.23)
<k N1

Ey=1

ZIH

After some simple algebra one eventually finds

Ey—Ey_1= % (2.24)
which proves the result (1.13).

It should be noted in conclusion that the obtained solution is only valid for the considered
exponential-type distribution, equation (1.3). It is crucial for the above proof that the form of
the distribution of a random elemest does not change after its shift by a constant value. On
the other hand, it is clear from the above proof that in the thermodynamicAimit oo the
leading (in ¥ N) contribution toEy is defined only by the very beginning of the distribution,
P[J — 0]. Therefore, the resuliy_, ., = ¢£(2) mustalso be correct for the ‘rectangular’-type
distribution: P[0 < J < 1] = 1; P[J > 1] = 0 (it is actually the model with this type of
distribution which was studied in the replica solution [1]). For the discussion of other types of
matching models see, e.g., [5] and references therein.
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Appendix A

In this appendix we prove that the value&ﬁ,(é‘) defined in equation (2.19) is given by the
rectangulaiv x k problem (2.20).
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First, let us consider the simplest cdse: 2:

0 0
0 0
SEY) = E ~E
[T -] I
= @ _E®, (A1)

The above two problemﬁfvz) andEl(Vz), differ only by the permutation of two elemeni2, 1)

and(2, 2), while all the other matrix elements; in both matrices are the same. Nevertheless,
even this ‘tiny’ permutation, in general, can make the ground state configurations of the matrix
$ in the two problems are quite different. Note that for the calculation of the above average
energy differencéE](VZ) we can average ovek; both simultaneously (keeping; to be the
same in both problems) as well as separatel)éfﬁ} and forE,(\,z).

Forfurther proofitisimportant to introduce the concepgbiivalencemong the columns
(and among the lines). We call the two colunypgand , (or the two lines; andi,) equivalent
if the probabilities of the position§, j;) and(i, j») (or (i1, j) and(iz, j)) to be occupied in
the ground state are equal.

Due to the obvious symmetry properties of the systems under consideration, it is evident
that in each of the above problenis? and £{?, all the columns on the right of the double
vertical line, and all the lines below the double horizontal line are equivalentamong themselves.
On the other hand, the first two lines in each of the above problems are also equivalent between
themselves, but they are not equivalent to the rest ofthe 2) lines. Besides, in the problem
E? we have the first two columns which are equivalent between themselves, but which are
not equivalent to the rest of t@/ — 2) columns. Finally, in the problerﬁf\,z) the first column
is not equivalent to the rest of th{&y — 1) columns.

Now we can separate all possible ground state configurations of the two proﬁlﬁh&nd
E](VZ), into severahon-equivalentlasses according to the positions of the occupied elements
in the first two lines.

Due to the equivalence of the first two lines and due to the equivalence oNthe?2)
columns ( = 3,..., N) we can reduce all the ground states of the probﬁﬁ’\ to the
following four non-equivalent basic configurations:

0 ° Ol e
Of e O e
(@) ) (A2)
O O)
O e [©)
1] T ]
(c) (d)

where ‘' represent the elements occupied in the ground state configuration of the Shatmiot
‘(' denote occupied element with ‘0’. Note that each of the above configurations represents
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the whole set of equivalent configurations. For instance,{)}Ar@presents all configurations
with ‘e’ in any of (N — 2) positions(2, j), (j =3, ..., N), as well as all configurations with
‘e’ in the position(2, 1) and anothere’ in any of (N — 2) positions(l, j), (j =3, ..., N).
The diagram (A.2) represents all configurations in whioheof the zeros is occupied. Note
also that all configurations of the type

O e
e |0 (A.3)

must be excluded from the consideration since tbagnotbe the ground state as they are
always higher in energy than the states represented ir/JA.2
In the same way, due to the equivalence of the first two lines and due to the equivalence of

(N — 1 columns(j =2,..., N)inthe problemEfvz) we have only two non-equivalent basic
configurations:
0| = ©)
T T A
(a) )

Here for the occupied positions we use the notatidin'stead of ‘e’ to distinguish them from
those in the ground states of the problﬂﬁ).

Now to compute the contribution to the difference of the ener@@@, equation (A.1),
we have to consider all possible combinations of the ground state configurations of the problem
E?, equation (A.2), and of those of the problefff’, equation (A.4).

Itis evidentthat if in the problerﬂﬁ) we have one of the configurations of the type .2
or (A.2b) and in the problem@fvz) we have one of the configurations of the type @.4all
those in which no one ‘0’ is occupied), then (since the two problems contain the same set of
Jijs) the positions ofs’ and ‘+’ in the first two lines (as well as all occupied positions in the
rest of(N — 2) lines) must coincide. Therefore, these two cases give no contributmﬁb
equation (A.1).

It is also evident that the combination of one of the ground states of the type)(&v.2
(A.2b) with (A.4b) is impossible. For example, let us suppose that the ground state of the
problemE,(Vz) is the configuration (A.2), and that of the probleni,‘vz) is the configuration
(A.4b). Then, according to the definition of the ground state, the energy ofjARist be
smaller than that of the configuration (A which in turn (since the problenﬁ“}v) contain
the same set af;;S) must be smaller than the energy of the configuration{A.@n the other
hand, the energy of the configuration (&)4s equal to

0 *
0 * (A.5)

1

of the problemEl(Vz). Thus, the energy of (A.5) is smaller than that of (#).4and therefore
(A.4b) cannot be the ground state.

Similar arguments show that the combinations of (ARith (A.4a), as well as (A.2)
with (A.4a) are also impossible.

The combination of (A.2) and (A.%) is allowed, but in this case, according to the
definition of the ground state, the position ef in (A.2¢) of the problemE,(vz) must coincide
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with the position of ¥’ in (A.4b) of the probIemE(Z), and therefore this combination also

gives no contribution t6 E?.
Finally, we are left W|th the combination of the ground state configurations of the types
(A.2d) and (A.%) which indeed give a finite contribution &E,(Vz), equation (A.1). Since the

position of one of the elements in the second line of the prolﬁé,?rhis different from that of
the problemE,(vz), in general, the positions of the occupied elements in the rest githe 2)

lines in these two problems can be quite different. The corresponding energy diﬁété}ﬁ)ce
equation (A.1), can be represented as follows:

N
SEY = (Z[Jf(j)j - Ji(m])- (A.6)

j=1

Here J; ;,; andJ;(;; represent the elements of thith column occupied in the ground states

of the problemsZ? and E\?, respectively.

Let us consider the integration (the averaging) over the subspatess$uch that in the
problemE}vZ) the ground state configurations belong to the type {A&nhdin the problem
E,(VZ) the ground state configurations belong to the type#)\(i the latter case we can always
place the occupied position of the second row into the position (2.2)). Since the valpe of
in E\?"is zero while in£? this value is non-zero (this is the only difference between the two
problems), if we analyse discretely the restrictions imposed, ga by the requirements that
the ground states are of the type (#)&and (A.4) we can easily see that the corresponding
subspace of; ;s in EN is ‘narrower’ than that oE(Z) (in other words, the subspace £f;s
in E@ includes that ofz\?). Therefore, in the integration over ;s of the differencé £
the restrictions imposed af ;s in the two problems do not ‘mix’: they are defined only by
the problem& 2.

In the course of integration of the expression (A.6) o¥grs within this subspace we
will have all kinds of different ground state configurations in the remairiiig— 2) lines
(i = 3,...,N) of the two problems. The crucial point, however, is that in terms of the
probabilities of these various configurations (within this subspace!) the two probﬁ’-:ffﬁs,
andEf\f), turn out to be symmetric. Let us clarify this point in more detail.

First, let us consider the structure of the sum in equation (A.6) for fixed generic values of
the random parameteys ; such that the ground state of the probIE\fﬁ) belongs to the type
(A.2d), and the ground state of the probleﬁ‘lﬁ) belongs to the type (A#. If we combine
the occupied positions (denoted by and ‘«’) in the ground state configurations of the two
problems we can find the following generic picture (to simplify the notation it is shown for the
matrix with N = 9):

®

" . (A.7)

[ ] *

Here the symbol®’ in the position (11) denotes the element (which is equal to zero) occupied
simultaneously in both problems. Thus, inthe sum (A.6) the first column gives no contribution,
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then we have two columns (hnumber 2 and 6 in the above example) in which one of the elements
of the difference(J;;); — Ji(;);) belongs to the second line, and finally we hawe — 3)

equivalentcolumns in which both elementfs(j), j) and(i(j), j) belong to the rest of the
(N — 2) equivalentines.

By the symmetry of the two problemsﬁﬁ) and El(f), within the subspace of;;s
corresponding to the combination of the classes {A&hd (A.4) we mean the following.
Since both problems hatke sameJ;;s in (N — 2) equivalent linegi = 3, ..., N), and these
random parameters havee sameprobability distribution, and in the process of averaging
in equation (A.6) we integrate ovef;s within the samesubspace, the average value of any
Jiji=3,...,N;j=3,...,N)inthe probIemE"](f) must be equal to that in the problem
E](VZ). For the same reasons the average value of/gn§i = 3, ..., N) in the problemE}VZ)
(provided the element (22) is occupied in the probkéﬁ‘l) must be equal to the average of any
Jij i =3,...,N)inthe problemE(Af) providedthe element (2) is occupied in the problem

For the averaging of the sum in equation (A.6) this has the following consequences. Letus
suppose thatin a column numbge¢j = 3, ..., N) with some probability? we find the value

of the difference(J; ;) ; — Ji(j;) = 8J: here the value; ; ; = J1 is occupied in the problem

E,(Vz), and the valudg;;,; = J» is occupied in the problelﬁ,(vz). Then due to the equivalence of
thecolumngj = 3,..., N)andthelinegi = 3, ..., N), and due to the symmetry of the two
problems iranothercolumnj’ with the same probability’ we can find the opposite situation:

(Jijn;» — Jijnj) = —8J. In other words, in another columji with the same probability>
we can find the valug, = J;;,; occupied in the problent? and the valuel; = J;
occupied in the problent?’,

A similar situation takes place in the remaining two columns in which one of the elements
of the difference(J;;); — Ji(j,) belongs to the second line. If with some probabiltythe

value of the occupied element of the second colutyy), = J (in the problemE",(vz)), then due

to equivalence of the lingg = 3, ..., N), and due to the symmetry of the two problems with
the same probability"” we can find the same valug;); = J (in the problemEj(vz)) of the
occupied element in the other columiinumber 6 in the example (A.7)) provided the element
(2j) of this column is occupied in the probleﬁ’f\,z).

Thus, in equation (A.6) we integrate ovgys the expression which in terms of the elements
ofthe(N —2) lines(i = 3, ..., N) isantisymmetriavith respect to permutations of different
equivalent columns. On the other hand, the probability distribution of these elements is
symmetricwith respect to such permutations. Therefore, these elements can be integrated
out to give a zero contribution. (The most trivial example of such a situation is an integral
of the type [ dJydJz (J1 — Jo) exp{—J1 — Jo}: if we integrate here ovef;, and overJ in
the samesubspace (whatever it is) this integral is identically equal to zero.) According to the
above analysis of the contributions to the energy diﬁere&Ejé) of the other combinations
of classes of states (A.2) and (A.4), the integration over the rest of the spdges ¢but of
the subspace corresponding to the considered combinatiod)(AtRl (A.%)) gives a zero
contribution. In the result, all the parameteks (i = 3,..., N) can be integrated out and
dropped away from the expression in equation (A.6), and we are left with the averaging of the
‘truncated’ expression which contaidgs of the first two lines only:

8E1(V2)=E<8 >_E<00 )

(A.8)
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It is evident that the ground state energy of the second problem in equation (A.8) is zero, and
thus we have proved that the valuem](\’,‘zz) is given by the rectangula¥ x 2 problem (2.20).

The generalization of the proof for arbitrakyis straightforward. It can be easily
demonstrated on the example of the case 3:

0 0

SEQ = E -E

=EQ - ED. (A.9)

Here one should make a similar classification to equations (A.2) and (A.4) (which turns
out to be only slightly more cumbersome) of all non-equivalent ground state configurations
of the problems?l(\f‘) andES‘) according to the positions of the occupied elements of the first
three lines. A simple analysis shows that here again the only relevaﬂﬁ(ﬁi) configurations
of the problemEl(Vs) are those with all three zeros occupied, while in the probﬁg(fﬁ these
are the configurations with one or two of the zeros occupied. On the other hand, due to the
equivalence of the rest of thi@&/ —3) lines(i = 4, ..., N) one finds that all the elementsg of
these lines fall out of the computation. In this way one easily finds that the energy difference
SE is defined only by the elements of the first three lines of the proliigih which is just
defined in terms of the ‘truncated’ problem:

0
SEQ = E 0 (A.10)
0

(the energy of the ‘truncated¥ x 3 problemEﬁ) is identically equal to zero).

Using the equivalence of the firgt — 1) lines in the problem‘?%‘) and of the firsk lines
in the problemE,(\’,‘) a similar procedure can be easily generalized for an arbitrary value of
k. Similar to the casek = 2 and 3, here one can easily prove that in the probﬂé\fh the
only relevant class of the ground state configurations is thatallithzeros (in positionsii),
i =1,...,k)occupied. One can easily see that whenever the ground state of the pmjﬁiem
is such that one (or more) of these zeros is not occupied, then the ground state configuration
in the problemE}’ (defined by the same set df;s!) mustbe the same as that &, and
therefore these types of configurations do not contribuﬁe?lﬁ@), equations (2.19) and (A.6).
Thus, the non-zero contribution &&\’ comes only from the subspace.bfs such that in the
ground state oE}(,‘) all k diagonal zeros are occupied, while the ground stafé(\@f(since here
one cannot occupy all zeros) can be any configuration in which one, or twoor (k — 1)
zeros occupied. In other words, E*f\f) one can have any configuration in which among the
first k lines there argk — 1) or (k — 2), ..., or one line where the occupied position is not
the zero one. However complicated these configurations are, in the process of averaging of
(SE}\’,‘) (of the type (A.6)) over the random parametérs just for symmetry reasons, one again
obtains a zero contribution from alt;s of the last(N — k) lines(i = k+1,..., N), and
thus the problem is reduced to the ‘truncated’ one, equation (2.20), defined by the random
parameterd;; of the firstk lines only.
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The calculation of the actual vaIues&if(A’,‘) is presented in the next appendix.

Appendix B

In this appendix we prove that
k=1

1 !
SEY = : B.1
N k-1 Z; N -1 6.1

The solution of the caske = 2, equation (A.8), is trivial. Here the ground state configuration
is of the type (A.4), where the position of’ must be at the smallest element out 6A\2— 1)
non-zeroJ;;s. According to the distribution (1.3), for the average value of this element we
obtain

1
SEQ = —— . B.2
Now let us consider a slightly more complicated ciase 3, equation (A.10). A simple

analysis of the structures of possible ground state configurations shows that all of them can be
taken into account in terms of only one<33 matrix:

0 ®|z

® 0 | ®| (B.3)

y |0 | x
Herex is the smallest element out of ¥ — 2) equivalent elements; (j = 3,..., N) and
J3; (j = 3,..., N) of the second and the third lines;is the smallest element out of two
equivalent elements,; andJs;; z is the smallest element out @F — 2) equivalent elements
Jij (j =3,..., N) of the first line; the symbol®’ denotes the elements which do not enter

into any ground state configuration. One can easily check that the matrix in equation (A.10)
can have only two ground state energies equaldoequal to(y + 7). Note that if we consider
this problem in terms of the ¥ 3 matrix (B.3), the element could as well be placed in
position (3, 2) (instead of & which then should be placed at positigd, 3)), as well asy
could be interchanged witt®" in positions(2, 1) and(3, 1).

Now one can easily note that originalx33 problem (B.3) is actually equivalent to the
2 x 2 problem

(SES‘):E( 8 = ) (B.4)

where, according to the definitions of the random parametegsand z, their statistical
distributions are

P(x) = 2(N — 2) exp[-2(N — 2)x] (B.5)
P(y) = 2exp(—2y) (B.6)
P(z) = (N — 2)exp[-(N — 2)z]. (B.7)

Keeping in mind further generalization of the solution for arbitrayyve solve the problem
(B.4) in the following way. Similarly to the procedure described at the beginning of section 2,
we can ‘shift’ the elements of the second lineahdy) by the value of the smallest of them,
and then integrate it out:

3 _ 1 1
57 = s oo (o) (®.8)

o
2\l
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The factor (N — 1) in the second term of the above equation is the probability that
smaller thany (if the smallest element is, then the remaining problem will have all zeros

at the diagonal, and the minimum energy of this problem is identically equal to zero). The
solution of the remaining % 2 problem is trivial, and eventually we obtain the following
result:

SEY = + =
N"T2IN-1) 3(N-1(N-2) 3x2
Now the generalization of the above procedure for an arbitrary value lmécomes
evident. First we note that all possible ground state configurations aWVtkek problem
(SE[(V"), equation (2.20), can be taken into account in terms of tkek matrix

1 1 1 1 N 2
N—-1 N-2

}. (B.9)

0 e ® | 21
0 ce ® | 22
B.10
... |0 ® | Zk-2 ( )
| ®|... | ® 0 | ®
yi|y2 |- | Ye2 | O | x
Herex is the smallest element out of ® — k + 1) equivalent elementg;_1); (j =k, ..., N)
andJy; (j =k, ..., N) of the last two linesy; (j = 1,..., (k — 2) is the smallest element
out of two equivalent elementg;_1); andJy;; z; (i = 1,..., (k — 2) is the smallest element

outof (N —k+1) equivalentelement; (j =k, ..., N) of theith line; and again the symbol
‘®’ denotes the elements which do not enter into any ground state configuration.

According to the above definitions of the random parametedy;} and {z;} their
probability distribution functions are

P(x) = 2(N —k + 1) exp[—2(N — k + 1)x] (B.11)
P(y;) = 2exp(—2y;) (B.12)
P(z;)) = (N —k+1)exp[—(N —k + 1)z;]. (B.13)

In this way we can reduce the calculatiorﬁtﬂ‘x‘) to the(k — 1) x (k — 1) matrix problem:;

0 . 21
0 - 22
SEW = E . . (B.14)
0 (k=2
Y| Y2 |- | V=2 | X

Taking into account the equivalence of the fiist- 2) columns here we can integrate out the
smallest element of the last line to obtain

O 21
o |... 22
SE,(\I,‘)z 1 N k—2 E (B.15)
2(IN—-1) (N -1 ... 10 Z(k—3)
L 0 2(k—2)
yi | Y2 |- | Ya-3 | 0| x

Now one can easily see that all possible ground state configurations in the remaining
(k — 1) x (k — 1) problem can be taken into account in the same way as in the previous
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k x k one, equation (B.10). Here we can reduce the number of relevant elements by choosing
the smallest one betweanandz_»), as well as between eagh of the last line and/x_»);

(j=1,..., (k—3)) of the previous line. In this way we obtain
O e ® 21
0 caa ® 22
1 k—2

SE® = + E B.16
NEON-D (N 70 2 70 (B.16)

QI X|... | & 0| ®

yi|y2 | ... | Ya-3 | O | x

where the random elementsand{y;} according to their definitions are now described by the
following distribution functions:

P(x) = 3(N — k + 1) exp[—3(N — k + 1)x] (B.17)
P(y;) = 3exp(—3y;) (B.18)

while the distribution functions of;s remain unchanged, equation (B.13). In this way we can
reduce the calculation @£’ to the(k — 2) x (k — 2) matrix problem

0 . 21
o |... 22
1 k—2
SEW = v D' 1)E (B.19)
( ... |0 Z(k—3)
Y| Y2 | -« | Yk=3 | X
Here again we can integrate out the smallest element of the last line to obtain
‘SEz(\]f) _ 1 . k—2 1
20N—1 (N—-1|3N-2
0 . 71
o ... 22
k—3 e
+ E (B.20)
(N -2 ... |10 Z(k—4)
e 0 Z(k—-3)
yi| Y2 | oo | Ya-g | O] x

Continuing these iterations up to the last trivial2problem we eventually obtain the following
result:

®) 1 k-2 1 k-3 1
SEy = + +
20N—1 (N—-1|[3(N-=2 (N—2)|4N -3
k—4 1
s i) ]l @2
After simple algebra the above expression can be easily reduced to the following form:
sEW = - 1,2 oy k1 (B.22)
kk—1)|N—-1 N-2 N—-k+1

which proves equation (B.1).
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