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Abstract. In this paper we present the exact solution for the average minimum energy of the
random bipartite matching model with an arbitrary finite number of elements where randomly
paired interactions are described by an independent exponential distribution. This solution confirms
the Parisi conjecture proposed for this model previously, as well as the result of the replica solution
of this model in the thermodynamic limit.

1. The model

The model under consideration can be formulated as follows. We have a society consisting
of N ‘men’ (labelled byi = 1, 2, . . . , N) andN ‘women’ (labelled byj = 1, 2, . . . , N)
described by a given set ofN2 random non-negative interactions{Jij } between every man and
every woman. The statistics ofJijs is defined by a probability distribution functionP [Jij ].

Then we consider all possible ‘marriages’ with strict monogamy: every man can be
connected with one and only one woman, and vice versa. Thus, a particular marriage
configuration in this society can be described by theN × N permutation matrixSij with
the elements taking values 0 or 1 (‘0’ for all non-coupled pairs of men and women, and ‘1’ for
married couples) constrained by two conditions:

N∑
i=1

Sij =
N∑
j=1

Sij = 1 (1.1)

which allow one and only one ‘1’ in each row and in each column of the matrixŜ. The total
number of all possible marriage configurations in this society is thus equal toN !.

Now for every marriage configuration̂S we introduce the total energy, or total weight (the
Hamiltonian):

H [Ŝ; Ĵ ] =
N∑

i,j=1

SijJij . (1.2)

For a given matrixŜ this energy is equal to the sum ofN particularJijs (one from each line
and each column) corresponding to the particular married couples. In this paper we consider
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the simplest possible model in which the interactions{Jij } are assumed to be independent and
described by the bounded exponential distribution

P [Jij ] =
N∏

i,j=1

exp(−Jij ) (06 Jij < +∞). (1.3)

The problem studied below is formulated as follows: one has to find the valueEN of the
average (over the distributionP [Jij ]) minimum(over all configurations of the permutation
matrixSij ) energy (1.2):

EN =
[

N∏
i,j=1

∫ ∞
0

dJij

]
P [Jij ] min

Sij

(
N∑

i,j=1

SijJij

)
. (1.4)

Equivalently, in the language of statistical mechanicsEN can be obtained as the zero-
temperature limit of the average free energy:

EN = − lim
β→∞

1

β

[
N∏

i,j=1

∫ ∞
0

dJij exp(−Jij )
]

log

(∑
Sij

exp

[
−β

N∑
i,j=1

SijJij

])

≡ − lim
β→∞

1

β

(
log

[∑
Sij

exp{−βH [Ŝ; Ĵ ]}
])
. (1.5)

Thus, we face the typical problem of statistical mechanics with quenched disorder: first, for
given values of random parameters{Jij } one has to compute the partition function and the free
energy, and only after that does one carry out the averaging overJijs.

In the thermodynamic limit (N → ∞) this problem has been solved some years ago in
the framework of the replica symmetric ansatz [1], yielding the result

EN→∞ = ζ(2) = 1
6π

2. (1.6)

In this paper we present the exact solution of this problem for an arbitrary (finite) value ofN .
The caseN = 1 is trivial,

EN=1 = 1. (1.7)

The caseN = 2 is only slightly more complicated, and it can also be easily calculated explicitly.
Here the 2× 2 permutation matrix̂S can have only two configurations:

1 0
0 1

(1.8)

and

0 1
1 0

. (1.9)

Thus, according to the definitions (1.4) or (1.5) we have

EN=2 = 2
∫ ∞

0
dJ11 dJ12 dJ21 dJ22 (J11 + J22) exp{−J11− J12− J21− J22}

×θ(J12 + J21− J11− J22). (1.10)

Here theθ -function ensures that the state (1.8) has a lower energy than (1.9) (due to the obvious
symmetry of the system the contribution from the opposite situation turns out to be the same,
and this provides the factor of two in the above equation). Simple integration yields

EN=2 = 1 + 1
4. (1.11)
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Noting that the result (1.6) forN = ∞ can also be represented in the form

EN→∞ = ζ(2) =
∞∑
k=1

1

k2
(1.12)

and taking into account the results (1.7) and (1.11), Parisi has recently proposed a very elegant
conjecture that the solution of the problem for an arbitrary value ofN must be the following
[2]:

EN =
N∑
k=1

1

k2
. (1.13)

For thedirect calculation ofEN (in the style of equation (1.10)) with an arbitraryN one
should perform the integration over the parameters{Jij } in the constrained positive subspace
Jij > 0 of theN2-dimensional space. Since the total number of states of theN×N permutation
matrix is equal toN ! this integration is also constrained by(N ! − 1) hyperplanes which
guarantee that one chosen particular state has the minimum energy. One can easily verify
that even in the caseN = 3 such a calculation turns out to be an extremely difficult problem.
Nevertheless, simple numerical tests forN = 3, 4, 5 proved to be compatible with the above
conjecture with the precision∼10−5 [2]. Moreover, recent analytical studies have provided
the exact solution of this problem forN 6 4 [3] and forN 6 6 [4], and the result of these
solutions confirms the conjecture (1.13). Here we use the original idea (proposed by Bravyi)
of the unpublished work [3] to prove that the conjecture (1.13) is indeed correct for arbitrary
N .

2. The proof

To ease further presentation of the proof let us introduce the following notation. The operation
of finding the average of the minimum energy of theN×N problem (defined in equations (1.4)
or (1.5)) will be denoted by the symbol

E



. . .

. . .

. . .

. . .
. . .

. . .

 = EN. (2.1)

It is assumed that ‘empty’ boxes in the above matrix actually contain random elements{Jij }
Let us consider the first line of the random matrixJij , and amongN of its elementsJ1j let

us find the minimum one:J (1) ≡ minj (J1j ). Due to its obvious symmetry of the problem with
respect to permutations of the columns of the matrixJij we can always place this minimum
element in the position(1, 1). Now let us redefine the elements of thefirst line as follows:

J1j = J (1) + J̃1j (j 6= 1) (2.2)

and leave all the other elements unchanged. According to (1.3), the elementsJ̃1j are described
by the sameexponential distribution,P [J̃1j ] = exp(−J̃1j ), (J̃1j > 0), while for J (1) the
distribution is

P [J (1)] = N exp
(−NJ (1)). (2.3)
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Due to the constrains (1.1), the above redefinition produces only a simple shift of the
Hamiltonian (1.2):

H = J (1) +
N∑

i,j=1

Sij J̃ij (2.4)

where the random matrix̃Jij contains ‘0’ in the position(1, 1), while the rest of its elements
are described by the same distribution (1.3). Now using the definition ofEN , equation (1.5),
we can easily integrate outJ (1) to obtain

EN = 1

N
+E(1)N (2.5)

where

E
(1)
N = E



0 . . .
. . .
. . .
. . .

. . .
. . .

. (2.6)

To calculateE(1)N let us consider thesecondline of the above random matrix, and among
N of its elementsJ2j let us find the minimum one:J (2) ≡ minj (J2j ). Now, due to the ‘0’ in
position(1, 1), the first column of this matrix is no longer equivalent to the rest of the(N −1)
columns (which remain equivalent among themselves). Therefore, with probability 1/N the
minimum element can be in the position(2, 1), and with the probability(N−1)/N it can be in
the rest of the positions of the second line, and in this last case we can place it in position(2, 2).
Then we shift the values of the elements of the second line:J2j = J (2) + J̃2j (which leave the
distribution of{J̃2j } unchanged). The integration overJ (2) gives one more factor 1/N , and
for EN we obtain

EN = 2

N
+
(N − 1)

N
E
(2)
N +

1

N
Ẽ
(2)
N (2.7)

where

E
(2)
N = E



0 . . .
0 . . .

. . .

. . .
. . .

. . .

 (2.8)

and

Ẽ
(2)
N = E



0 . . .
0 . . .

. . .

. . .
. . .

. . .

. (2.9)
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Equation (2.7) can be represented in the form

EN = 2

N
+E(2)N +

1

N
δE

(2)
N (2.10)

where

δE
(2)
N = E



0 . . .
0 . . .

. . .

. . .
. . .

. . .

−E


0 . . .
0 . . .

. . .

. . .
. . .

. . .

. (2.11)

To calculate the valueE(2)N defined by the matrix

0 . . .
0 . . .

. . .

. . .
. . .

. . .

(2.12)

let us consider itsthird line, and amongN elementsJ3j let us find the minimum one:
J (3) ≡ minj (J3j ). Due to the two ‘0’s in positions(1, 1) and(2, 2), the first and the second
columns of this matrix are equivalent between themselves, but they are not equivalent to the
rest of the(N−2) columns (which remain equivalent among themselves). Therefore, with the
probability 2/N the minimum element can be placed in the position(3, 2), and with probability
(N − 2)/N it can be in the rest of the positions of the third line, and here we can place it in
position(3, 3). Then we shift the values of the elements of the third line:J3j = J (3) + J̃3j

(which again leave the distribution of{J̃3j } unchanged), and integrate overJ (3) which gives
one more factor 1/N . In this way we obtain

EN = 3

N
+
(N − 2)

N
E
(3)
N +

2

N
Ẽ
(3)
N + δE(2)N (2.13)

where

E
(3)
N = E



0 . . .
0 . . .

0 . . .
. . .

. . .
. . .

 (2.14)

and

Ẽ
(3)
N = E



0 . . .
0 . . .
0 . . .

. . .
. . .

. . .

. (2.15)
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Equation (2.13) can be represented in the form

EN = 3

N
+E(3)N +

2

N
δE

(3)
N +

1

N
δE

(2)
N (2.16)

where

δE
(3)
N = E



0 . . .
0 . . .
0 . . .

. . .
. . .

. . .

−E


0 . . .
0 . . .

0 . . .
. . .

. . .
. . .

. (2.17)

Proceeding in this way up to the last line we eventually obtain

EN = 1 +
N∑
k=2

k − 1

N
δE

(k)
N (2.18)

(note thatE(N)N ≡ 0 since it is given by the matrix with all zeros on the diagonal) where

δE
(k)
N = E



0 . . . . . .
0 . . . . . .

. . .
. . . 0 . . .
. . . 0 . . .
. . . 0 . . .
. . . . . .

. . .
. . . . . .



−E



0 . . . . . .
0 . . . . . .

. . .
. . . 0 . . .
. . . 0 . . .
. . . 0 . . .
. . . . . .

. . .
. . . . . .


. (2.19)

Here the double lines mark the positions of thekth column and thekth line.
It can be proved (see appendix A) that the above valueδE

(k)
N is given by therectangular

N × k random matrix problem:

δE
(k)
N = E



0 . . . . . .
0 . . . . . .

. . .
. . . 0 . . .
. . . 0 . . .
. . . 0 . . .

 (2.20)
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defined by the Hamiltonian

H [Ŝ; Ĵ ] =
N∑
i=1

k∑
j=1

SijJij (2.21)

where the random matrixJij is shown in equation (2.20) (with the same independent
exponential distributions of non-zero elements). Here the ‘truncated’N×k part of the original
permutation matrix̂S again can have only one ‘1’ in each line, and besides it hask columns
each containing only one ‘1’ and(N − k) columns each containing only ‘0’.

It turns out that the above ‘rectangular’ problem, equation (2.20), can be solved explicitly
(the proof is given in appendix B):

δE
(k)
N =

1

k(k − 1)

k−1∑
l=1

l

N − l . (2.22)

Substituting this result into equation (2.18) we find

EN = 1 +
1

N

N∑
k=2

1

k

k−1∑
l=1

l

N − l . (2.23)

After some simple algebra one eventually finds

EN − EN−1 = 1

N2
(2.24)

which proves the result (1.13).
It should be noted in conclusion that the obtained solution is only valid for the considered

exponential-type distribution, equation (1.3). It is crucial for the above proof that the form of
the distribution of a random elementJij does not change after its shift by a constant value. On
the other hand, it is clear from the above proof that in the thermodynamic limitN →∞ the
leading (in 1/N ) contribution toEN is defined only by the very beginning of the distribution,
P [J → 0]. Therefore, the resultEN→∞ = ζ(2)must also be correct for the ‘rectangular’-type
distribution: P [0 6 J 6 1] = 1; P [J > 1] = 0 (it is actually the model with this type of
distribution which was studied in the replica solution [1]). For the discussion of other types of
matching models see, e.g., [5] and references therein.
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Appendix A

In this appendix we prove that the value ofδE(k)N defined in equation (2.19) is given by the
rectangularN × k problem (2.20).
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First, let us consider the simplest casek = 2:

δE
(2)
N = E



0 . . .
0 . . .

. . .

. . .

. . .

. . .
. . .

. . .


−E



0 . . .
0 . . .

. . .

. . .

. . .

. . .
. . .

. . .


≡ Ẽ(2)N − E(2)N . (A.1)

The above two problems,̃E(2)N andE(2)N , differ only by the permutation of two elements:(2, 1)
and(2, 2), while all the other matrix elementsJij in both matrices are the same. Nevertheless,
even this ‘tiny’ permutation, in general, can make the ground state configurations of the matrix
Ŝ in the two problems are quite different. Note that for the calculation of the above average
energy differenceδE(2)N we can average overJij both simultaneously (keepingJij to be the
same in both problems) as well as separately forẼ

(2)
N and forE(2)N .

For further proof it is important to introduce the concept ofequivalenceamong the columns
(and among the lines). We call the two columnsj1 andj2 (or the two linesi1 andi2) equivalent
if the probabilities of the positions(i, j1) and(i, j2) (or (i1, j) and(i2, j)) to be occupied in
the ground state are equal.

Due to the obvious symmetry properties of the systems under consideration, it is evident
that in each of the above problems,Ẽ(2)N andE(2)N , all the columns on the right of the double
vertical line, and all the lines below the double horizontal line are equivalent among themselves.
On the other hand, the first two lines in each of the above problems are also equivalent between
themselves, but they are not equivalent to the rest of the(N −2) lines. Besides, in the problem
E
(2)
N we have the first two columns which are equivalent between themselves, but which are

not equivalent to the rest of the(N −2) columns. Finally, in the problem̃E(2)N the first column
is not equivalent to the rest of the(N − 1) columns.

Now we can separate all possible ground state configurations of the two problems,Ẽ
(2)
N and

E
(2)
N , into severalnon-equivalentclasses according to the positions of the occupied elements

in the first two lines.
Due to the equivalence of the first two lines and due to the equivalence of the(N − 2)

columns (j = 3, . . . , N) we can reduce all the ground states of the problemE(2)N to the
following four non-equivalent basic configurations:

0 •
0 •

(a)

0 •
0 •

(b)⊙
0 •

(c)

⊙ ⊙
(d)

(A.2)

where ‘•’ represent the elements occupied in the ground state configuration of the matrixŜ, and
‘
⊙

’ denote occupied element with ‘0’. Note that each of the above configurations represents
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the whole set of equivalent configurations. For instance, (A.2b) represents all configurations
with ‘•’ in any of (N − 2) positions(2, j), (j = 3, . . . , N), as well as all configurations with
‘•’ in the position(2, 1) and another ‘•’ in any of (N − 2) positions(1, j), (j = 3, . . . , N).
The diagram (A.2c) represents all configurations in whichoneof the zeros is occupied. Note
also that all configurations of the type

0 •
• 0 (A.3)

must be excluded from the consideration since theycannotbe the ground state as they are
always higher in energy than the states represented in (A.2d).

In the same way, due to the equivalence of the first two lines and due to the equivalence of
(N − 1) columns(j = 2, . . . , N) in the problemẼ(2)N we have only two non-equivalent basic
configurations:

0 ∗
0 ∗

(a)

⊙
0 ∗

(b)

. (A.4)

Here for the occupied positions we use the notation ‘∗’ instead of ‘•’ to distinguish them from
those in the ground states of the problemE(2)N .

Now to compute the contribution to the difference of the energiesδE
(2)
N , equation (A.1),

we have to consider all possible combinations of the ground state configurations of the problem
E
(2)
N , equation (A.2), and of those of the problem̃E(2)N , equation (A.4).

It is evident that if in the problemE(2)N we have one of the configurations of the type (A.2a)
or (A.2b) and in the problemẼ(2)N we have one of the configurations of the type (A.4a) (all
those in which no one ‘0’ is occupied), then (since the two problems contain the same set of
Jijs) the positions of ‘•’ and ‘∗’ in the first two lines (as well as all occupied positions in the
rest of(N − 2) lines) must coincide. Therefore, these two cases give no contribution toδE

(2)
N ,

equation (A.1).
It is also evident that the combination of one of the ground states of the type (A.2a) or

(A.2b) with (A.4b) is impossible. For example, let us suppose that the ground state of the
problemE(2)N is the configuration (A.2a), and that of the problem̃E(2)N is the configuration
(A.4b). Then, according to the definition of the ground state, the energy of (A.2a) must be
smaller than that of the configuration (A.2d), which in turn (since the problem̃E(2)N contain
the same set ofJijs) must be smaller than the energy of the configuration (A.4b). On the other
hand, the energy of the configuration (A.2a) is equal to

0 ∗
0 ∗ (A.5)

of the problemẼ(2)N . Thus, the energy of (A.5) is smaller than that of (A.4b), and therefore
(A.4b) cannot be the ground state.

Similar arguments show that the combinations of (A.2c) with (A.4a), as well as (A.2d)
with (A.4a) are also impossible.

The combination of (A.2c) and (A.4b) is allowed, but in this case, according to the
definition of the ground state, the position of ‘•’ in (A.2c) of the problemE(2)N must coincide
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with the position of ‘∗’ in (A.4b) of the problemẼ(2)N , and therefore this combination also
gives no contribution toδE(2)N .

Finally, we are left with the combination of the ground state configurations of the types
(A.2d) and (A.4b) which indeed give a finite contribution toδE(2)N , equation (A.1). Since the
position of one of the elements in the second line of the problemẼ

(2)
N is different from that of

the problemE(2)N , in general, the positions of the occupied elements in the rest of the(N − 2)
lines in these two problems can be quite different. The corresponding energy differenceδE

(2)
N ,

equation (A.1), can be represented as follows:

δE
(2)
N =

(
N∑
j=1

[Jĩ(j)j − Ji(j)j ]
)
. (A.6)

HereJĩ(j)j andJi(j)j represent the elements of thej th column occupied in the ground states

of the problemsẼ(2)N andE(2)N , respectively.
Let us consider the integration (the averaging) over the subspace ofJi,js such that in the

problemE(2)N the ground state configurations belong to the type (A.2d) and in the problem
Ẽ
(2)
N the ground state configurations belong to the type (A.4b) (in the latter case we can always

place the occupied position of the second row into the position (2.2)). Since the value ofJ22

in E(2)N is zero while inẼ(2)N this value is non-zero (this is the only difference between the two
problems), if we analyse discretely the restrictions imposed onJi,js by the requirements that
the ground states are of the type (A.2d) and (A.4b) we can easily see that the corresponding
subspace ofJi,js in Ẽ(2)N is ‘narrower’ than that ofE(2)N (in other words, the subspace ofJi,js
in E(2)N includes that ofẼ(2)N ). Therefore, in the integration overJi,js of the differenceδE(2)N
the restrictions imposed onJi,js in the two problems do not ‘mix’: they are defined only by
the problemẼ(2)N .

In the course of integration of the expression (A.6) overJi,js within this subspace we
will have all kinds of different ground state configurations in the remaining(N − 2) lines
(i = 3, . . . , N) of the two problems. The crucial point, however, is that in terms of the
probabilities of these various configurations (within this subspace!) the two problems,Ẽ

(2)
N

andE(2)N , turn out to be symmetric. Let us clarify this point in more detail.
First, let us consider the structure of the sum in equation (A.6) for fixed generic values of

the random parametersJi,j such that the ground state of the problemE(2)N belongs to the type
(A.2d), and the ground state of the problem̃E(2)N belongs to the type (A.4b). If we combine
the occupied positions (denoted by ‘•’ and ‘∗’) in the ground state configurations of the two
problems we can find the following generic picture (to simplify the notation it is shown for the
matrix withN = 9):

⊗
• ∗
∗ •
∗ •
• ∗

• ∗
• ∗

∗ •
• ∗

. (A.7)

Here the symbol ‘⊗’ in the position (11) denotes the element (which is equal to zero) occupied
simultaneously in both problems. Thus, in the sum (A.6) the first column gives no contribution,
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then we have two columns (number 2 and 6 in the above example) in which one of the elements
of the difference(Jĩ(j)j − Ji(j)j ) belongs to the second line, and finally we have(N − 3)

equivalentcolumns in which both elements(ĩ(j), j) and(i(j), j) belong to the rest of the
(N − 2) equivalentlines.

By the symmetry of the two problems,̃E(2)N and E(2)N , within the subspace ofJijs
corresponding to the combination of the classes (A.2d) and (A.4b) we mean the following.
Since both problems havethe sameJijs in (N − 2) equivalent lines(i = 3, . . . , N), and these
random parameters havethe sameprobability distribution, and in the process of averaging
in equation (A.6) we integrate overJijs within the samesubspace, the average value of any
Jij (i = 3, . . . , N; j = 3, . . . , N) in the problemẼ(2)N must be equal to that in the problem
E
(2)
N . For the same reasons the average value of anyJi2 (i = 3, . . . , N) in the problemẼ(2)N

(provided the element (22) is occupied in the problemE(2)N ) must be equal to the average of any
Jij (i = 3, . . . , N) in the problemE(2)N providedthe element (2j ) is occupied in the problem
Ẽ
(2)
N .

For the averaging of the sum in equation (A.6) this has the following consequences. Let us
suppose that in a column numberj (j = 3, . . . , N)with some probabilityP we find the value
of the difference(Jĩ(j)j − Ji(j)j ) ≡ δJ : here the valueJĩ(j)j ≡ J1 is occupied in the problem

Ẽ
(2)
N , and the valueJi(j)j ≡ J2 is occupied in the problemE(2)N . Then due to the equivalence of

the columns(j = 3, . . . , N) and the lines(i = 3, . . . , N), and due to the symmetry of the two
problems inanothercolumnj ′ with the same probabilityP we can find the opposite situation:
(Jĩ(j ′)j ′ − Ji(j ′)j ′) = −δJ . In other words, in another columnj ′ with the same probabilityP

we can find the valueJ2 = Jĩ(j ′)j ′ occupied in the problem̃E(2)N and the valueJ1 = Ji(j ′)j ′

occupied in the problemE(2)N .
A similar situation takes place in the remaining two columns in which one of the elements

of the difference(Jĩ(j)j − Ji(j)j ) belongs to the second line. If with some probabilityP ′ the

value of the occupied element of the second columnJĩ(2)2 = J (in the problemẼ(2)N ), then due
to equivalence of the lines(i = 3, . . . , N), and due to the symmetry of the two problems with
the same probabilityP ′ we can find the same valueJi(j)j = J (in the problemE(2)N ) of the
occupied element in the other columnj (number 6 in the example (A.7)) provided the element
(2j) of this column is occupied in the problem̃E(2)N .

Thus, in equation (A.6) we integrate overJijs the expression which in terms of the elements
of the(N − 2) lines(i = 3, . . . , N) is antisymmetricwith respect to permutations of different
equivalent columns. On the other hand, the probability distribution of these elements is
symmetricwith respect to such permutations. Therefore, these elements can be integrated
out to give a zero contribution. (The most trivial example of such a situation is an integral
of the type

∫∫
dJ1 dJ2 (J1 − J2) exp{−J1 − J2}: if we integrate here overJ1 and overJ2 in

the samesubspace (whatever it is) this integral is identically equal to zero.) According to the
above analysis of the contributions to the energy differenceδE

(2)
N of the other combinations

of classes of states (A.2) and (A.4), the integration over the rest of the space ofJijs (out of
the subspace corresponding to the considered combination (A.2d) and (A.4b)) gives a zero
contribution. In the result, all the parametersJij (i = 3, . . . , N) can be integrated out and
dropped away from the expression in equation (A.6), and we are left with the averaging of the
‘truncated’ expression which containsJijs of the first two lines only:

δE
(2)
N = E

(
0 . . .
0 . . .

)
−E

(
0 . . .

0 . . .

)
.

(A.8)
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It is evident that the ground state energy of the second problem in equation (A.8) is zero, and
thus we have proved that the value ofδE

(k=2)
N is given by the rectangularN×2 problem (2.20).

The generalization of the proof for arbitraryk is straightforward. It can be easily
demonstrated on the example of the casek = 3:

δE
(3)
N = E



0 . . .
0 . . .
0 . . .

. . .

. . .

. . .
. . .

. . .


−E



0 . . .
0 . . .

0 . . .
. . .
. . .
. . .

. . .
. . .


≡ Ẽ(3)N − E(3)N . (A.9)

Here one should make a similar classification to equations (A.2) and (A.4) (which turns
out to be only slightly more cumbersome) of all non-equivalent ground state configurations
of the problemsE(3)N andẼ(3)N according to the positions of the occupied elements of the first
three lines. A simple analysis shows that here again the only relevant (forδE

(3)
N ) configurations

of the problemE(3)N are those with all three zeros occupied, while in the problemẼ
(3)
N these

are the configurations with one or two of the zeros occupied. On the other hand, due to the
equivalence of the rest of the(N−3) lines(i = 4, . . . , N) one finds that all the elementsJij of
these lines fall out of the computation. In this way one easily finds that the energy difference
δE

(3)
N is defined only by the elements of the first three lines of the problemẼ

(3)
N , which is just

defined in terms of the ‘truncated’ problem:

δE
(3)
N = E

 0 . . .
0 . . .
0 . . .

 (A.10)

(the energy of the ‘truncated’N × 3 problemE(3)N is identically equal to zero).
Using the equivalence of the first(k − 1) lines in the problemẼ(k)N and of the firstk lines

in the problemE(k)N a similar procedure can be easily generalized for an arbitrary value of
k. Similar to the casesk = 2 and 3, here one can easily prove that in the problemE

(k)
N the

only relevant class of the ground state configurations is that withall k zeros (in positions(ii),
i = 1, . . . , k) occupied. One can easily see that whenever the ground state of the problemE

(k)
N

is such that one (or more) of these zeros is not occupied, then the ground state configuration
in the problemẼ(k)N (defined by the same set ofJijs!) mustbe the same as that ofE(k)N , and
therefore these types of configurations do not contribute toδE

(k)
N , equations (2.19) and (A.6).

Thus, the non-zero contribution toδE(k)N comes only from the subspace ofJijs such that in the
ground state ofE(k)N all k diagonal zeros are occupied, while the ground state ofẼ

(k)
N (since here

one cannot occupy allk zeros) can be any configuration in which one, or two, . . . or (k − 1)
zeros occupied. In other words, iñE(k)N one can have any configuration in which among the
first k lines there are(k − 1) or (k − 2), . . . , or one line where the occupied position is not
the zero one. However complicated these configurations are, in the process of averaging of
δE

(k)
N (of the type (A.6)) over the random parametersJij , just for symmetry reasons, one again

obtains a zero contribution from allJijs of the last(N − k) lines (i = k + 1, . . . , N), and
thus the problem is reduced to the ‘truncated’ one, equation (2.20), defined by the random
parametersJij of the firstk lines only.
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The calculation of the actual values ofδE(k)N is presented in the next appendix.

Appendix B

In this appendix we prove that

δE
(k)
N =

1

k(k − 1)

k−1∑
l=1

l

N − l . (B.1)

The solution of the casek = 2, equation (A.8), is trivial. Here the ground state configuration
is of the type (A.4b), where the position of ‘∗’ must be at the smallest element out of 2(N −1)
non-zeroJijs. According to the distribution (1.3), for the average value of this element we
obtain

δE
(2)
N =

1

2(N − 1)
. (B.2)

Now let us consider a slightly more complicated casek = 3, equation (A.10). A simple
analysis of the structures of possible ground state configurations shows that all of them can be
taken into account in terms of only one 3× 3 matrix:

0 ⊗ z

⊗ 0 ⊗
y 0 x

. (B.3)

Herex is the smallest element out of 2(N − 2) equivalent elementsJ2j (j = 3, . . . , N) and
J3j (j = 3, . . . , N) of the second and the third lines;y is the smallest element out of two
equivalent elementsJ21 andJ31; z is the smallest element out of(N − 2) equivalent elements
J1j (j = 3, . . . , N) of the first line; the symbol ‘⊗’ denotes the elements which do not enter
into any ground state configuration. One can easily check that the matrix in equation (A.10)
can have only two ground state energies equal tox or equal to(y +z). Note that if we consider
this problem in terms of the 3× 3 matrix (B.3), the elementx could as well be placed in
position(3, 2) (instead of ‘⊗’ which then should be placed at position(3, 3)), as well asy
could be interchanged with ‘⊗’ in positions(2, 1) and(3, 1).

Now one can easily note that original 3× 3 problem (B.3) is actually equivalent to the
2× 2 problem

δE
(3)
N = E

(
0 z
y x

)
(B.4)

where, according to the definitions of the random parametersx, y and z, their statistical
distributions are

P(x) = 2(N − 2) exp[−2(N − 2)x] (B.5)

P(y) = 2 exp(−2y) (B.6)

P(z) = (N − 2) exp[−(N − 2)z]. (B.7)

Keeping in mind further generalization of the solution for arbitraryk, we solve the problem
(B.4) in the following way. Similarly to the procedure described at the beginning of section 2,
we can ‘shift’ the elements of the second line (x andy) by the value of the smallest of them,
and then integrate it out:

δE
(3)
N =

1

2(N − 1)
+

1

(N − 1)
E

(
0 z

0 x

)
. (B.8)
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The factor 1/(N − 1) in the second term of the above equation is the probability thaty is
smaller thanx (if the smallest element isx, then the remaining problem will have all zeros
at the diagonal, and the minimum energy of this problem is identically equal to zero). The
solution of the remaining 2× 2 problem is trivial, and eventually we obtain the following
result:

δE
(3)
N =

1

2(N − 1)
+

1

3(N − 1)(N − 2)
= 1

3× 2

[
1

N − 1
+

2

N − 2

]
. (B.9)

Now the generalization of the above procedure for an arbitrary value ofk becomes
evident. First we note that all possible ground state configurations of theN × k problem
δE

(k)
N , equation (2.20), can be taken into account in terms of thek × k matrix

0 . . . ⊗ z1

0 . . . ⊗ z2

. . .
. . . 0 ⊗ z(k−2)

⊗ ⊗ . . . ⊗ 0 ⊗
y1 y2 . . . y(k−2) 0 x

. (B.10)

Herex is the smallest element out of 2(N − k + 1) equivalent elementsJ(k−1)j (j = k, . . . , N)
andJkj (j = k, . . . , N) of the last two lines;yj (j = 1, . . . , (k − 2) is the smallest element
out of two equivalent elementsJ(k−1)j andJkj ; zi (i = 1, . . . , (k − 2) is the smallest element
out of(N−k+1) equivalent elementsJij (j = k, . . . , N) of theith line; and again the symbol
‘⊗’ denotes the elements which do not enter into any ground state configuration.

According to the above definitions of the random parametersx, {yj } and {zi} their
probability distribution functions are

P(x) = 2(N − k + 1) exp[−2(N − k + 1)x] (B.11)

P(yj ) = 2 exp
(−2yj

)
(B.12)

P(zi) = (N − k + 1) exp[−(N − k + 1)zi ]. (B.13)

In this way we can reduce the calculation ofδE(k)N to the(k − 1)× (k − 1) matrix problem:

δE
(k)
N = E


0 . . . z1

0 . . . z2

. . .
. . . 0 z(k−2)

y1 y2 . . . y(k−2) x

. (B.14)

Taking into account the equivalence of the first(k − 2) columns here we can integrate out the
smallest element of the last line to obtain

δE
(k)
N =

1

2(N − 1)
+

k − 2

(N − 1)
E



0 . . . z1

0 . . . z2

. . .
. . . 0 z(k−3)

. . . 0 z(k−2)

y1 y2 . . . y(k−3) 0 x

. (B.15)

Now one can easily see that all possible ground state configurations in the remaining
(k − 1) × (k − 1) problem can be taken into account in the same way as in the previous
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k × k one, equation (B.10). Here we can reduce the number of relevant elements by choosing
the smallest one betweenx andz(k−2), as well as between eachyj of the last line andJ(k−2)j

(j = 1, . . . , (k − 3)) of the previous line. In this way we obtain

δE
(k)
N =

1

2(N − 1)
+

k − 2

(N − 1)
E



0 . . . ⊗ z1

0 . . . ⊗ z2

. . .
. . . 0 ⊗ z(k−3)

⊗ ⊗ . . . ⊗ 0 ⊗
y1 y2 . . . y(k−3) 0 x

 (B.16)

where the random elementsx and{yj } according to their definitions are now described by the
following distribution functions:

P(x) = 3(N − k + 1) exp[−3(N − k + 1)x] (B.17)

P(yj ) = 3 exp
(−3yj

)
(B.18)

while the distribution functions ofzis remain unchanged, equation (B.13). In this way we can
reduce the calculation ofδE(k)N to the(k − 2)× (k − 2) matrix problem

δE
(k)
N =

1

2(N − 1)
+

k − 2

(N − 1)
E


0 . . . z1

0 . . . z2

. . .
. . . 0 z(k−3)

y1 y2 . . . y(k−3) x

. (B.19)

Here again we can integrate out the smallest element of the last line to obtain

δE
(k)
N =

1

2(N − 1)
+

k − 2

(N − 1)

[
1

3(N − 2)

+
k − 3

(N − 2)
E



0 . . . z1

0 . . . z2

. . .
. . . 0 z(k−4)

. . . 0 z(k−3)

y1 y2 . . . y(k−4) 0 x



. (B.20)

Continuing these iterations up to the last trivial 2×2 problem we eventually obtain the following
result:

δE
(k)
N =

1

2(N − 1)
+

k − 2

(N − 1)

[
1

3(N − 2)
+

k − 3

(N − 2)

[
1

4(N − 3)

+
k − 4

(N − 3)

[
· · ·
[

1

k(N − k + 1)

]
· · ·
]]]

. (B.21)

After simple algebra the above expression can be easily reduced to the following form:

δE
(k)
N =

1

k(k − 1)

[
1

N − 1
+

2

N − 2
+ · · · + k − 1

N − k + 1

]
(B.22)

which proves equation (B.1).
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